首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31015篇
  免费   3967篇
  国内免费   2324篇
化学   2479篇
晶体学   38篇
力学   3267篇
综合类   354篇
数学   21946篇
物理学   9222篇
  2024年   42篇
  2023年   428篇
  2022年   476篇
  2021年   555篇
  2020年   1033篇
  2019年   1004篇
  2018年   907篇
  2017年   887篇
  2016年   928篇
  2015年   748篇
  2014年   1406篇
  2013年   2644篇
  2012年   1483篇
  2011年   1807篇
  2010年   1740篇
  2009年   2003篇
  2008年   2169篇
  2007年   2039篇
  2006年   1782篇
  2005年   1744篇
  2004年   1495篇
  2003年   1394篇
  2002年   1221篇
  2001年   932篇
  2000年   862篇
  1999年   816篇
  1998年   752篇
  1997年   626篇
  1996年   525篇
  1995年   423篇
  1994年   353篇
  1993年   244篇
  1992年   223篇
  1991年   235篇
  1990年   188篇
  1989年   114篇
  1988年   113篇
  1987年   110篇
  1986年   112篇
  1985年   99篇
  1984年   95篇
  1983年   47篇
  1982年   93篇
  1981年   81篇
  1980年   59篇
  1979年   62篇
  1978年   51篇
  1977年   37篇
  1976年   30篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 80 毫秒
11.
In this paper, we define interval‐valued left‐sided and right‐sided generalized fractional double integrals. We establish inequalities of Hermite‐Hadamard like for coordinated interval‐valued convex functions by applying our newly defined integrals.  相似文献   
12.
13.
The present study optimised the ultrasound-assisted extraction (UAE) of bioactive compounds from Amaranthus hypochondriacus var. Nutrisol. Influence of temperature (25.86–54.14 °C) and ultrasonic power densities (UPD) (76.01–273.99 mW/mL) on total betalains (BT), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA), colour parameters (L*, a*, and b*), amaranthine (A), and isoamaranthine (IA) were evaluated using response surface methodology. Moreover, betalain extraction kinetics and mass transfer coefficients (KLa) were determined for each experimental condition. BT, BC, BX, TP, AA, b*, KLa, and A were significantly affected (p < 0.05) by temperature extraction and UPD, whereas L*, a*, and IA were only affected (p < 0.05) by temperature. All response models were significantly validated with regression coefficients (R2) ranging from 87.46 to 99.29%. BT, A, IA, and KLa in UAE were 1.38, 1.65, 1.50, and 29.93 times higher than determined using conventional extraction, respectively. Optimal UAE conditions were obtained at 41.80 °C and 188.84 mW/mL using the desired function methodology. Under these conditions, the experimental values for BC, BX, BT, TP, AA, L*, a*, b*, KLa, A, and IA were closely related to the predicted values, indicating the suitability of the developed quadratic models. This study proposes a simple and efficient UAE method to obtain betalains and polyphenols with high antioxidant activity, which can be used in several applications within the food industry.  相似文献   
14.
In this paper, we consider a viscoelastic wave equation of variable coefficients in the presence of past history with nonlinear damping and delay in the internal feedback and dynamic boundary conditions. Under suitable assumptions, we establish an explicit and general decay rate result without imposing restrictive assumption on the behavior of the relaxation function at infinity by Riemannian geometry method and Lyapunov functional method.  相似文献   
15.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
16.
17.
18.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   
19.
In the present study, novel representatives of the important group of biologically-active, dehydroabietic acid-bearing dithiocarbamate moiety, were synthesized and characterized by 1H NMR, 13C NMR, HR-MS. The in vitro antiproliferative activity evaluation (MTT) indicated that these compounds exhibited potent inhibitory activities in various cancer cell lines (HepG-2, MCF-7, HeLa, T-24, MGC-803). Particularly, compound III-b possessed extraordinary cytotoxicity with low micromolar IC50 values ranging from 4.07 to 38.84 µM against tested cancer cell lines, while displayed weak cytotoxicity on two normal cell lines (LO-2 and HEK 293 T). Subsequently, the potential mechanisms of representative compound III-b were elementarily investigated by Transwell experiment, which showed III-b can inhibit cancer cells migration. Annexin-V/PI dual staining showed that the compound can induce HepG-2 cells apoptosis in a dose-dependent manner. Meanwhile this apoptosis may be related to the upregulated protein expression of cleaved-caspase 3, cleaved-caspase 9, Bax and downregulated of Bcl-2 indicated by Western Blot. Later study further confirmed that ROS levels in HepG-2 cells increased significantly with the rise of concentrations. In addition, through the network pharmacology data analyzing, the core targets and signaling pathways of compound III-b for treatment of liver neoplasms were forecasted. Molecular docking model showed that compound III-b had high affinity with hub targets (CASP3, EGFR, HSP90AA1, MAPK1, ERBB2, MDM2), suggesting that compound III-b might target the hub protein to modulate signaling activity. Taken together, these data indicated that dehydroabietic acid structural modification following the “Molecular hybridization” principle is a feasible way to discover the potential multi-targeted antitumor compounds.  相似文献   
20.
In the paper mentioned in the title, it is proved the boundedness of the Riesz potential operator of variable order α(x) from variable exponent Morrey space to variable exponent Campanato space, under certain assumptions on the variable exponents p(x) and λ(x) of the Morrey space. Assumptions on the exponents were different depending on whether α ( x ) p ( x ) ? n + λ ( x ) p ( x ) takes or not the critical values 0 or 1. In this note, we improve those results by unifying all the cases and covering the whole range 0 ? α ( x ) p ( x ) ? n + λ ( x ) p ( x ) ? 1. We also provide a correction to some minor technicality in the proof of Theorem 2 in the aforementioned paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号